Initial release v1.1.0
- Complete MVP for tracking Fidelity brokerage account performance - Transaction import from CSV with deduplication - Automatic FIFO position tracking with options support - Real-time P&L calculations with market data caching - Dashboard with timeframe filtering (30/90/180 days, 1 year, YTD, all time) - Docker-based deployment with PostgreSQL backend - React/TypeScript frontend with TailwindCSS - FastAPI backend with SQLAlchemy ORM Features: - Multi-account support - Import via CSV upload or filesystem - Open and closed position tracking - Balance history charting - Performance analytics and metrics - Top trades analysis - Responsive UI design Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
273
backend/app/api/endpoints/analytics_v2.py
Normal file
273
backend/app/api/endpoints/analytics_v2.py
Normal file
@@ -0,0 +1,273 @@
|
||||
"""
|
||||
Enhanced analytics API endpoints with efficient market data handling.
|
||||
|
||||
This version uses PerformanceCalculatorV2 with:
|
||||
- Database-backed price caching
|
||||
- Rate-limited API calls
|
||||
- Stale-while-revalidate pattern for better UX
|
||||
"""
|
||||
from fastapi import APIRouter, Depends, Query, BackgroundTasks
|
||||
from sqlalchemy.orm import Session
|
||||
from typing import Optional
|
||||
from datetime import date
|
||||
|
||||
from app.api.deps import get_db
|
||||
from app.services.performance_calculator_v2 import PerformanceCalculatorV2
|
||||
from app.services.market_data_service import MarketDataService
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.get("/overview/{account_id}")
|
||||
def get_overview(
|
||||
account_id: int,
|
||||
refresh_prices: bool = Query(default=False, description="Force fresh price fetch"),
|
||||
max_api_calls: int = Query(default=5, ge=0, le=50, description="Max Yahoo Finance API calls"),
|
||||
start_date: Optional[date] = None,
|
||||
end_date: Optional[date] = None,
|
||||
db: Session = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
Get overview statistics for an account.
|
||||
|
||||
By default, uses cached prices (stale-while-revalidate pattern).
|
||||
Set refresh_prices=true to force fresh data (may be slow).
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
refresh_prices: Whether to fetch fresh prices from Yahoo Finance
|
||||
max_api_calls: Maximum number of API calls to make
|
||||
start_date: Filter positions opened on or after this date
|
||||
end_date: Filter positions opened on or before this date
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Dictionary with performance metrics and cache stats
|
||||
"""
|
||||
calculator = PerformanceCalculatorV2(db, cache_ttl=300)
|
||||
|
||||
# If not refreshing, use cached only (fast)
|
||||
if not refresh_prices:
|
||||
max_api_calls = 0
|
||||
|
||||
stats = calculator.calculate_account_stats(
|
||||
account_id,
|
||||
update_prices=True,
|
||||
max_api_calls=max_api_calls,
|
||||
start_date=start_date,
|
||||
end_date=end_date
|
||||
)
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
@router.get("/balance-history/{account_id}")
|
||||
def get_balance_history(
|
||||
account_id: int,
|
||||
days: int = Query(default=30, ge=1, le=3650),
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Get account balance history for charting.
|
||||
|
||||
This endpoint doesn't need market data, so it's always fast.
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
days: Number of days to retrieve (default: 30)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
List of {date, balance} dictionaries
|
||||
"""
|
||||
calculator = PerformanceCalculatorV2(db)
|
||||
history = calculator.get_balance_history(account_id, days)
|
||||
return {"data": history}
|
||||
|
||||
|
||||
@router.get("/top-trades/{account_id}")
|
||||
def get_top_trades(
|
||||
account_id: int,
|
||||
limit: int = Query(default=10, ge=1, le=100),
|
||||
start_date: Optional[date] = None,
|
||||
end_date: Optional[date] = None,
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Get top performing trades.
|
||||
|
||||
This endpoint only uses closed positions, so no market data needed.
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
limit: Maximum number of trades to return (default: 10)
|
||||
start_date: Filter positions closed on or after this date
|
||||
end_date: Filter positions closed on or before this date
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
List of trade dictionaries
|
||||
"""
|
||||
calculator = PerformanceCalculatorV2(db)
|
||||
trades = calculator.get_top_trades(account_id, limit, start_date, end_date)
|
||||
return {"data": trades}
|
||||
|
||||
|
||||
@router.get("/worst-trades/{account_id}")
|
||||
def get_worst_trades(
|
||||
account_id: int,
|
||||
limit: int = Query(default=10, ge=1, le=100),
|
||||
start_date: Optional[date] = None,
|
||||
end_date: Optional[date] = None,
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Get worst performing trades.
|
||||
|
||||
This endpoint only uses closed positions, so no market data needed.
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
limit: Maximum number of trades to return (default: 10)
|
||||
start_date: Filter positions closed on or after this date
|
||||
end_date: Filter positions closed on or before this date
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
List of trade dictionaries
|
||||
"""
|
||||
calculator = PerformanceCalculatorV2(db)
|
||||
trades = calculator.get_worst_trades(account_id, limit, start_date, end_date)
|
||||
return {"data": trades}
|
||||
|
||||
|
||||
@router.post("/refresh-prices/{account_id}")
|
||||
def refresh_prices(
|
||||
account_id: int,
|
||||
max_api_calls: int = Query(default=10, ge=1, le=50),
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Manually trigger a price refresh for open positions.
|
||||
|
||||
This is useful when you want fresh data but don't want to wait
|
||||
on the dashboard load.
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
max_api_calls: Maximum number of Yahoo Finance API calls
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Update statistics
|
||||
"""
|
||||
calculator = PerformanceCalculatorV2(db, cache_ttl=300)
|
||||
|
||||
stats = calculator.update_open_positions_pnl(
|
||||
account_id,
|
||||
max_api_calls=max_api_calls,
|
||||
allow_stale=False # Force fresh fetches
|
||||
)
|
||||
|
||||
return {
|
||||
"message": "Price refresh completed",
|
||||
"stats": stats
|
||||
}
|
||||
|
||||
|
||||
@router.post("/refresh-prices-background/{account_id}")
|
||||
def refresh_prices_background(
|
||||
account_id: int,
|
||||
background_tasks: BackgroundTasks,
|
||||
max_api_calls: int = Query(default=20, ge=1, le=50),
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Trigger a background price refresh.
|
||||
|
||||
This returns immediately while prices are fetched in the background.
|
||||
Client can poll /overview endpoint to see updated data.
|
||||
|
||||
Args:
|
||||
account_id: Account ID
|
||||
background_tasks: FastAPI background tasks
|
||||
max_api_calls: Maximum number of Yahoo Finance API calls
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Acknowledgment that background task was started
|
||||
"""
|
||||
def refresh_task():
|
||||
calculator = PerformanceCalculatorV2(db, cache_ttl=300)
|
||||
calculator.update_open_positions_pnl(
|
||||
account_id,
|
||||
max_api_calls=max_api_calls,
|
||||
allow_stale=False
|
||||
)
|
||||
|
||||
background_tasks.add_task(refresh_task)
|
||||
|
||||
return {
|
||||
"message": "Price refresh started in background",
|
||||
"account_id": account_id,
|
||||
"max_api_calls": max_api_calls
|
||||
}
|
||||
|
||||
|
||||
@router.post("/refresh-stale-cache")
|
||||
def refresh_stale_cache(
|
||||
min_age_minutes: int = Query(default=10, ge=1, le=1440),
|
||||
limit: int = Query(default=20, ge=1, le=100),
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Background maintenance endpoint to refresh stale cached prices.
|
||||
|
||||
This can be called periodically (e.g., via cron) to keep cache fresh.
|
||||
|
||||
Args:
|
||||
min_age_minutes: Only refresh prices older than this many minutes
|
||||
limit: Maximum number of prices to refresh
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Number of prices refreshed
|
||||
"""
|
||||
market_data = MarketDataService(db, cache_ttl_seconds=300)
|
||||
|
||||
refreshed = market_data.refresh_stale_prices(
|
||||
min_age_seconds=min_age_minutes * 60,
|
||||
limit=limit
|
||||
)
|
||||
|
||||
return {
|
||||
"message": "Stale price refresh completed",
|
||||
"refreshed": refreshed,
|
||||
"min_age_minutes": min_age_minutes
|
||||
}
|
||||
|
||||
|
||||
@router.delete("/clear-old-cache")
|
||||
def clear_old_cache(
|
||||
older_than_days: int = Query(default=30, ge=1, le=365),
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""
|
||||
Clear old cached prices from database.
|
||||
|
||||
Args:
|
||||
older_than_days: Delete prices older than this many days
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Number of records deleted
|
||||
"""
|
||||
market_data = MarketDataService(db)
|
||||
|
||||
deleted = market_data.clear_cache(older_than_days=older_than_days)
|
||||
|
||||
return {
|
||||
"message": "Old cache cleared",
|
||||
"deleted": deleted,
|
||||
"older_than_days": older_than_days
|
||||
}
|
||||
Reference in New Issue
Block a user