- Complete MVP for tracking Fidelity brokerage account performance - Transaction import from CSV with deduplication - Automatic FIFO position tracking with options support - Real-time P&L calculations with market data caching - Dashboard with timeframe filtering (30/90/180 days, 1 year, YTD, all time) - Docker-based deployment with PostgreSQL backend - React/TypeScript frontend with TailwindCSS - FastAPI backend with SQLAlchemy ORM Features: - Multi-account support - Import via CSV upload or filesystem - Open and closed position tracking - Balance history charting - Performance analytics and metrics - Top trades analysis - Responsive UI design Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
41 lines
1.3 KiB
Python
41 lines
1.3 KiB
Python
"""Add market_prices table for price caching
|
|
|
|
Revision ID: 003_market_prices
|
|
Revises: 002_add_positions
|
|
Create Date: 2026-01-20 16:00:00.000000
|
|
|
|
"""
|
|
from alembic import op
|
|
import sqlalchemy as sa
|
|
from datetime import datetime
|
|
|
|
|
|
# revision identifiers, used by Alembic.
|
|
revision = '003_market_prices'
|
|
down_revision = '002_add_positions'
|
|
branch_labels = None
|
|
depends_on = None
|
|
|
|
|
|
def upgrade() -> None:
|
|
# Create market_prices table
|
|
op.create_table(
|
|
'market_prices',
|
|
sa.Column('id', sa.Integer(), nullable=False),
|
|
sa.Column('symbol', sa.String(length=20), nullable=False),
|
|
sa.Column('price', sa.Numeric(precision=20, scale=6), nullable=False),
|
|
sa.Column('fetched_at', sa.DateTime(), nullable=False, default=datetime.utcnow),
|
|
sa.Column('source', sa.String(length=50), default='yahoo_finance'),
|
|
sa.PrimaryKeyConstraint('id')
|
|
)
|
|
|
|
# Create indexes
|
|
op.create_index('idx_market_prices_symbol', 'market_prices', ['symbol'], unique=True)
|
|
op.create_index('idx_symbol_fetched', 'market_prices', ['symbol', 'fetched_at'])
|
|
|
|
|
|
def downgrade() -> None:
|
|
op.drop_index('idx_symbol_fetched', table_name='market_prices')
|
|
op.drop_index('idx_market_prices_symbol', table_name='market_prices')
|
|
op.drop_table('market_prices')
|